



## Railroad development projects in the Oslo region



## **Agenda**

- Follobanen
  Background and project overview
- 2. Detailed view about:
  - Tunell
  - TBM or drill & blast?
  - Slab track or ballasted track
- 3. The road ahead



## Our responsibility



«The Norwegian Rail Administration works systematicly for continuous improvement of safety to avoid injury to people and the environment»



Yes! I am responsible



## Follobanen – Background



Follobanen will be built to meet the increased demand for rail capacity south of Oslo

- 1,1 million residents in the Oslo region
- 30 % population increase by 2025
- 150 000 passengers every day
- Road traffic is increasing
- Currently no spare capacity on neither rail nor road.
- Great potential for increased freight traffic
- High speed train line towards Sweden and Europe are currently under evaluation



## Follobanen: Facts and perspective

- The largest railway project In Norway 22 km of new double-track railway line between Oslo S and Ski
- The longest railway tunnel in Norway approximately 19,5 km
- Designed for at least 200 km/h or higher
- Two separate tubes with cross-passage every 500 meters
- No stop between Oslo and Ski
- Both Drill and Blast and TBM are considered
- Freight connection to Alnabru is considered, but not a part of the project



## **Tunnel concepts**

#### Concept 1



One double-track tunnel with exit to the surface every 1000 meter

### Concept 2



A double track tunnel with a parallel service tunnel and escape connections to service tunnel every 1000 meter

### Concept 3a



Two single track tunnels with escape connections every 500 meter

### Concept 3b



Two single track tunnels with escape connections every 500 meter

#### Conclusion

Concept 1 and 2: Only drill and blast are suitable

Concept 3: Both drill and blast and TBM are suitable

Decisions about two separate tubes and both methods are to be considered



# Tunnel with two separate tubes





## Geology

- Gneiss with fractured zones and intrusions
- Borability, DRI: 27 52 and CLI: 4 14
- Degree of fracturing: 1- 2
- Stability of the rock mass is considered to be good, except for some faults and fractured zones
- Hydrogeology: water leaking is expected in some areas mainly in fractured zones and intrusions





## Why TBM at Follobanen?

- TBM is considered to be competitive regarding both price and time
- The circular profile of TBM is suitable for railway
- Full lining might be an advantage on railways designed for high speed and heavy traffic
- A bored tunnel can give less disturbance to the external environment (access tunnels and ground vibration) during the excavation phase









## **Types of TBM**

## **Open machine**



- "Simple" machine
- Relatively low price
- Good progress in hard rock formations
- Sensitive to soft rock and fault zones
- Open front, pregrouting and water/frost protection is needed
- Rock support and water/frost protection behind the machine

### **Double shield machine**



- Good performance and more independent of ground conditions
- Boring and simultaneous segment installation
- Permanent rock support trough segment lining
- Traditional ground support, pregrouting and water/frost protection is limited
- Water protection by either "Single shell " or "Double shell" lining



# Recommended type of TBM

Double shield, a predictable solution





## Solutions for water and frost protection





#### **Drill and blast**

 Drained solution with cast in place concrete lining – Pregrouting is required in sensitive areas

#### **TBM**

Single or double shell lining?

- Single shell lining: Concrete segments with gaskets is water tight
- Double shell lining is usually drained

### Requirements

- Water / frost protection
- Rock support
- Progress

#### Conclusion

Single shell lining is recommended





# 9 access tunnels using drill & blast







# Rig area with 4 TBM machines





## Progress with TBM / drill & blast



### TBM:

- 15 m/day 90 m/week
- App. 300 working days (144 h/week) pr. year



## Drill & blast (incl. frontinjeksjon)

- 4-5 m/day 15-28,5 m/week (depending on level of frontinjeksjon)
- 101 t/week and 46 weeks/year



### Criteria for evaluation





- The differences between TBM (three variables) and drill & blast are, relatively speaking, small.
- Choise of methods are depending on the criterea that are chosen.



# Possible conflicts with existing facilities





## TBM muck (rock chips)

App 4.5 million m<sup>3</sup> total volume rock = App 7.2 million m<sup>3</sup> excavated muck

The volume of the Cheops Pyramid = 2.6 mill. m<sup>3</sup>



1.7 / 2.8 Cheops pyramids that goes to disposal site....



## **Transport**







### Closed convey or belt:

- No conflicts with road traffic
- Environmentally friendly
- Temporary construction vulnerable nature resources is a challenge

#### With car:

- Heavy traffic
- Dust
- Noise

#### With train:

- Evironmentally friendly soulution
- Lack of spare capacity on railroad is challenging



## Mass usage

Suitable land fillings for masses is being considered. Depending of method and production facilities, some of the mass may be re-used



#### Conventional driven tunnel:

- Some of the material can be re-used for bat filling and balasted track
  - Need for transportation of mass from several locations to production area/ storage

#### TBM:

Mass used for production of concrete



Reduced need for transport





## Comparison to other projects

### Two separate tubes on Follobanen

- Main reason for differences to other comparable projects.
- May lead to possible lack of space with 52m² diameter tubes

### The following points are to be evaluated:

- Track system Slab track or balasted track?
- Catenary system S25 are used today
- Signaling system Conventional or ERMTS?
- Technical installations





### The road ahead

## 4 possible solutions:

- Drill and blast
- 2. TBM
- 3. Combination drill and blast and TBM
- 4. Both alternative methods will be prepared for tender



- Based on preliminary results both methods are still to be considered.
- A desicion will be reached within the next 6 months



### Follobanen – made for the future



### Criteria:

- Cost
- Time
- LCC
- Environmental conditions





Regardless of the choise of methods, this will be a great challenge for the Norwegian Rail Administration, external consultants and contractors taking part in the project ©



## Environmental budget (LCA)



### Design plan

 Documentation of lifetime impacts regarding material use, construction work, material transport and operation

### **Construction plan**

- Eco procurement, buying green
- Improvement through better environmental solutions and products

#### Construction

- Demanding "Environmental product declaration" EPD of the most important materials
- Environmental accounting

Result: - More environmental friendly railroads



## Building for the future

Follobanen must satisfy tomorrow's requirements for:

- Safety
- Reliability
- Maintainability

### Solutions must last for a lifetime

Rail as environmentally friendly transportation:

 An environmental account will document the environmental effect of the construction phase





### Time schedule

2011

Main planning

Impact assessment - Approved

2012

Area development plan for public scrutiny

Detail planning

Permission from the Ministry of Transportation and Communications to start the constructions work

2013

Ski station: Carry out the first construction phase in 2012 and 2013

The rest of the project: Most of the contracts will probably be agreed on between 2013 and 2016

Our target: Finalized in 2018 - 19



